On accounting for speckle extinction via DIC and PCA
نویسندگان
چکیده
Digital Image Correlation (DIC) is a full-field measurement technique that generally relies on brightness conservation principles. This work aims to analyze cases in which the speckle pattern vanished after heating, thereby severely altering brightness. Sets of images acquired during 6 experiments were registered and then used obtain optimal sets reference for each time step via Principal Component Analysis (PCA). The proposed methodology significantly reduced gray level residuals provided insight into variations occurred analyzed cases. It was possible study with severe changes by updating image when standard DIC did not converge using PCA states.
منابع مشابه
statistical inference via empirical bayes approach for stationary and dynamic contingency tables
چکیده ندارد.
15 صفحه اولImpact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments
The advent of small-scale testing procedures coupled with scanning electron microscopy (SEM) imaging allow for high-resolution digital image correlation (DIC) studies to examine strain localization at the grain size length scale. A systematic study was performed to determine how speckle patterning parameters (speckle density and shape) affect strain resolution of DIC using SEM imaging. Strain r...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Sparse PCA via Covariance Thresholding
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension n × p and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here each of the principal components v1, . . . ,vr has at most s0 non-zero entries. We are particularly interested in the high dimensional regime wherein p is comparable to, or even much larger ...
متن کاملSparse PCA via Bipartite Matchings
We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. These components can be computed one by one, repeatedly solving the single-component problem and deflating the input data matrix, but as we show this greedy procedure is subopti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics and Lasers in Engineering
سال: 2022
ISSN: ['1873-0302', '0143-8166']
DOI: https://doi.org/10.1016/j.optlaseng.2021.106813